Rumus-Rumus Jumlah Khusus
Beberapa deret (jumlah) yang penting dan perlu diingat ialah sebagai berikut:
Deret Bilangan Asli
$1 + 2 + 3 + ... + n = \frac{1}{2}n(n+1)$
Deret Kuadrat Bilangan Asli
$1^2 + 2^2 + 3^2 + ... + n^2 = \frac{1}{6}n(n + 1)(2n + 1)$
Deret Pangkat Tiga Bilangan Asli
$1^3 + 2^3 + 3^3 + ... + n^3 = (\frac{1}{2}n(n+1))^2$
Deret Pangkat Empat Bilangan Asli
$1^4 + 2^4 + 3^4 + ... + n^4 = \frac{1}{30}n(n + 1)(2n + 1)(3n^2+3n-1)$
Deret Bilangan Ganjil
$1 + 3 + 5 + ... + (2n - 1) = n^2$
Deret Bilangan Genap
$2 + 4 + 6 + ... + 2n = n(n + 1)$
Deret Kuadrat Bilangan Ganjil
$1^2 + 3^2 + 5^2 + ... + (2n - 1)^2 = \frac{n(4n^2-1)}{3}$
Deret Pangkat Tiga Bilangan Ganjil
$1^3 + 3^3 + 5^3 + ... + (2n - 1)^3 = n^2(2n^2-1)$
Deret Bilangan Asli
$1 + 2 + 3 + ... + n = \frac{1}{2}n(n+1)$
Deret Kuadrat Bilangan Asli
$1^2 + 2^2 + 3^2 + ... + n^2 = \frac{1}{6}n(n + 1)(2n + 1)$
Deret Pangkat Tiga Bilangan Asli
$1^3 + 2^3 + 3^3 + ... + n^3 = (\frac{1}{2}n(n+1))^2$
Deret Pangkat Empat Bilangan Asli
$1^4 + 2^4 + 3^4 + ... + n^4 = \frac{1}{30}n(n + 1)(2n + 1)(3n^2+3n-1)$
$1 + 3 + 5 + ... + (2n - 1) = n^2$
$2 + 4 + 6 + ... + 2n = n(n + 1)$
Deret Kuadrat Bilangan Ganjil
$1^2 + 3^2 + 5^2 + ... + (2n - 1)^2 = \frac{n(4n^2-1)}{3}$
Deret Pangkat Tiga Bilangan Ganjil
$1^3 + 3^3 + 5^3 + ... + (2n - 1)^3 = n^2(2n^2-1)$
0 Response to "Rumus-Rumus Jumlah Khusus"
Posting Komentar